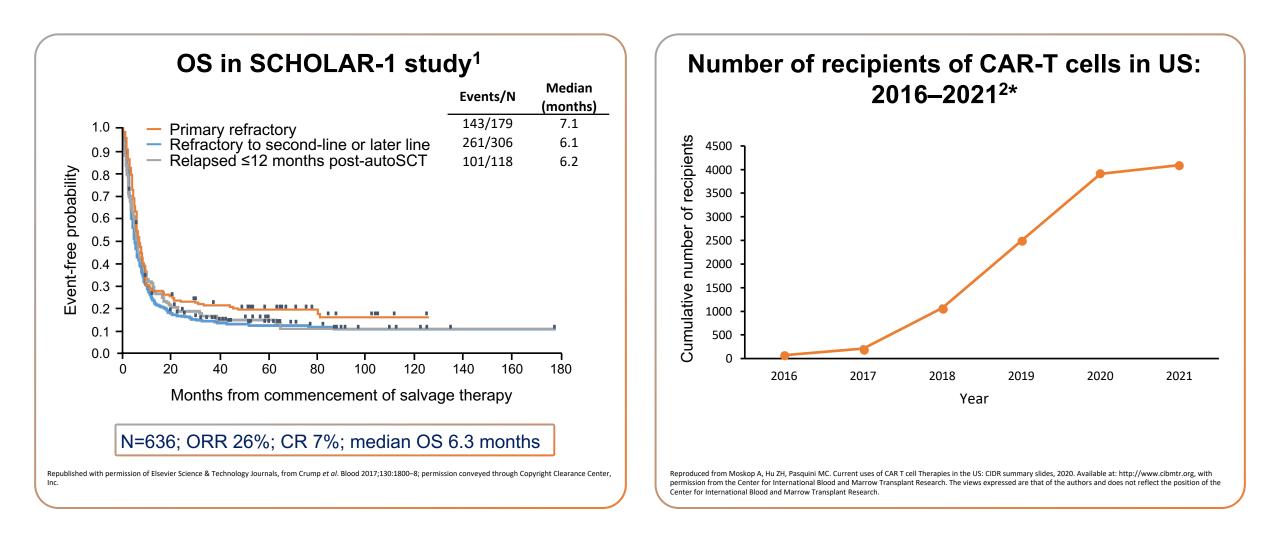
Trattamento SOC con CAR-T nel Linfoma Diffuso a Grandi Cellule B e nel linfoma mantellare recidivato o refrattario

Prof. Paolo Corradini

Chair of Hematology, University of Milano Division of Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy



Conflict of Interest Declaration *Prof. Paolo Corradini*

- No employment for any for-profit health care company (public or private) to disclose
- No leadership role (officer or board of directors) in any for-profit health care company (public or private) to disclose
- No stock or other ownership interest in any for-profit health care company (public or private) to disclose
- No activity as speakers' bureau for any for-profit health care company (public or private) to disclose
- I had honoraria paid by for-profit health care companies during the past 2 years: Abbvie, Amgen, Celgene, Daiichi Sankyo, Gilead, Janssen, Kite, Novartis, Roche, Sanofi, Servier, Takeda (Consulting, Advisory role or Lecturer)
- I had travel and accommodations paid by for-profit health care companies during the past 2 years: Novartis, Janssen, Celgene, BMS, Takeda, Gilead, Amgen, AbbVie, Roche, Sanofi

Poor outcomes in R/R DLBCL have led to an increased number of patients being treated with CAR-T cell therapy

*4094 patients and 4308 infusions, CIBMTR-CIDR data from the US², data incomplete for 2020 and 2021.

autoSCT, autologous stem cell transplantation; CAR, chimeric antigen receptor; CIBMTR-CIDR, Center for International Blood and Marrow Transplant

Research–Cellular Immunotherapy Data Resource; CR, complete response; DLBCL, diffuse large B-cell lymphoma; ORR, overall response rate; OS, overall survival; R/R, relapsed or refractory. 1. Crump M et al. Blood 2017;130:1800–8; 2. Moskop, A, Hu ZH, Pasquini MC. Current uses of CAR-T cell therapies in the US: CIDR summary slides, 2020. Available at: http://www.cibmtr.org (accessed May 2021).

Solood[®] 28 JULY 2022 | VOLUME 140, NUMBER 4

Regular Article

LYMPHOID NEOPLASIA

GLA/DRST real-world outcome analysis of CAR T-cell therapies for large B-cell lymphoma in Germany

Wolfgang A. Bethge

KEY POINTS

- Compared with tisa-cel, axi-cel was associated with better disease control but had a less favorable safety
 profile in SOC treatment of LBCL.
- This study suggests that important outcome determinants of CD19-directed CAR T-cell treatment of LBCL in the real-world setting are bridging success, CAR-T product selection, LDH, and the absence of prolonged neutropenia and/or severe neurotoxicity.
- With a median follow-up of 11 months, Kaplan-Meier estimates of OS, PFS, and nonrelapse mortality (NRM) 12 months after dosing were 52%, 30%, and 6%, respectively.

Survival, NRM, and relapse.

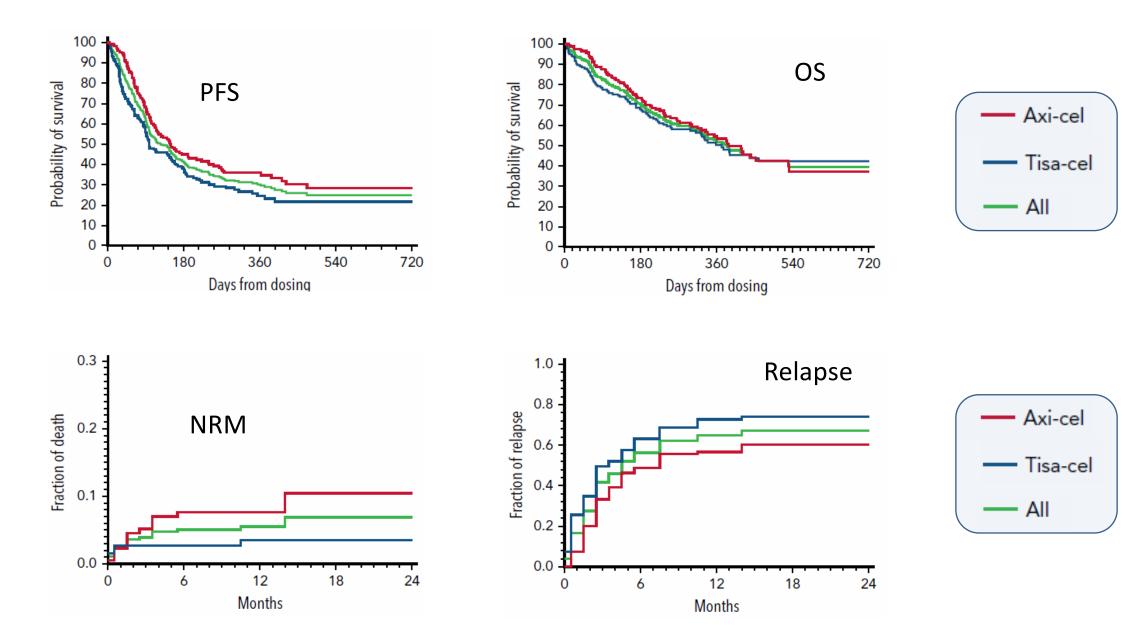
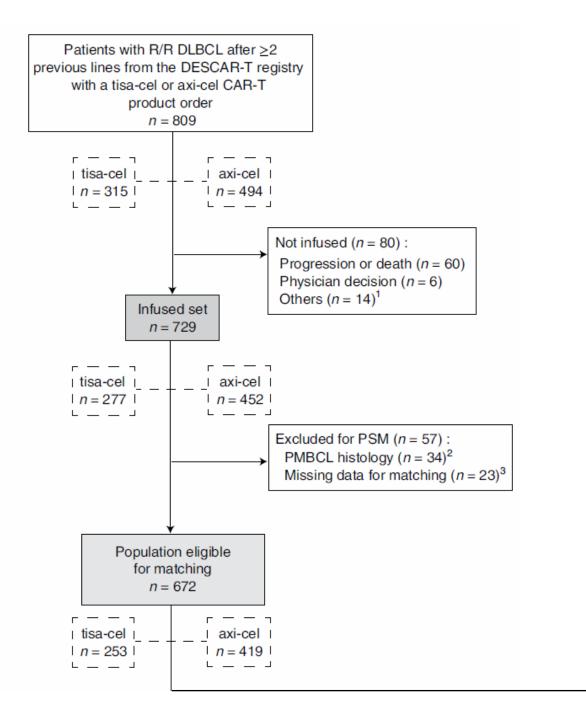


Figure 1

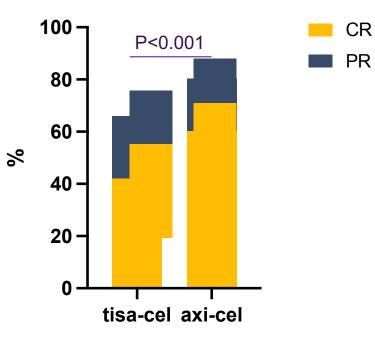
Conclusions


This study highlights some particularities of CD19-directed CAR T-cell treatment of LBCL in the real-world setting:

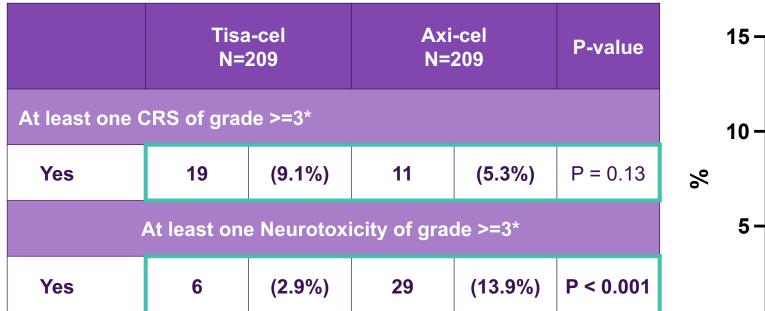
- a relevant risk of delayed infection-related NRM raising implications for potential prophylaxis strategies,
- the finding that effective bridging is an important predictor of CD19-directed CAR T-cell treatment efficacy and can overcome the adverse impact of actively proliferating disease on the outcome.
- these data suggest different safety/efficacy profiles of the two products available in the SOC setting, with less toxicity of tisa-cel, better disease control (CR and PFS) with axi-cel, and comparable survival.

OPEN A real-world comparison of tisagenlecleucel and axicabtagene ciloleucel CAR T cells in relapsed or refractory diffuse large B cell lymphoma

This matched comparison study supports a higher efficacy and also a higher toxicity of axi-cel compared to tisa-cel in the third or more treatment line for R/R DLBCL.

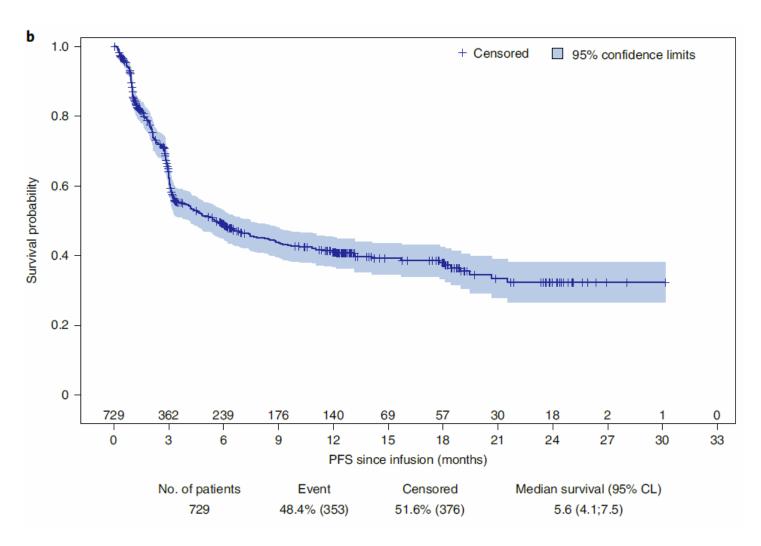


Patient flow diagram for PSM analysis

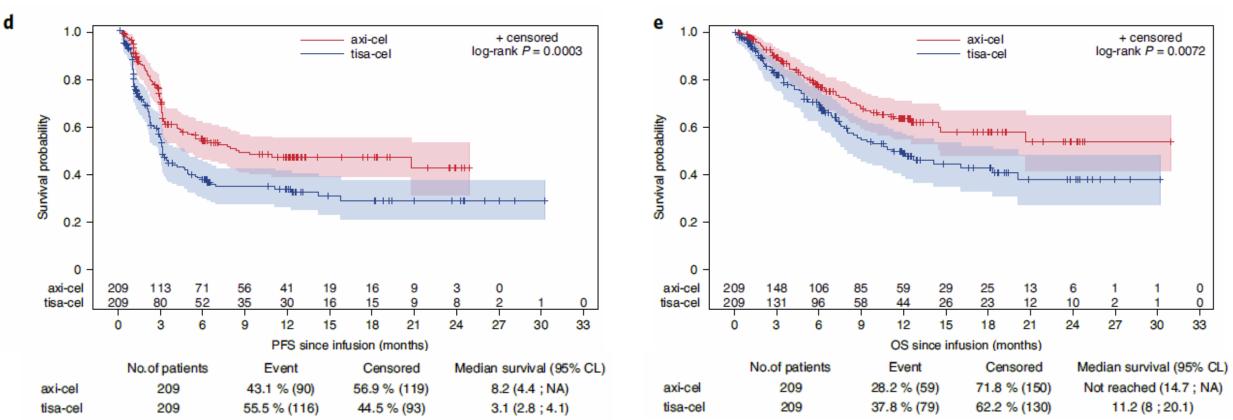

Results: Response Rates

	PSM		
	axi-cel N=209	tisa-cel N=209	Р
Response rate*			
ORR % (95% CI)	80.4 (74.3-85.5)	66.0 (59.2-72.4)	<0.001
CRR % (95% CI)	60.3 (53.3-67.0)	42.1 (35.3-49.1)	<0.001

*according to Lugano 2014 classification



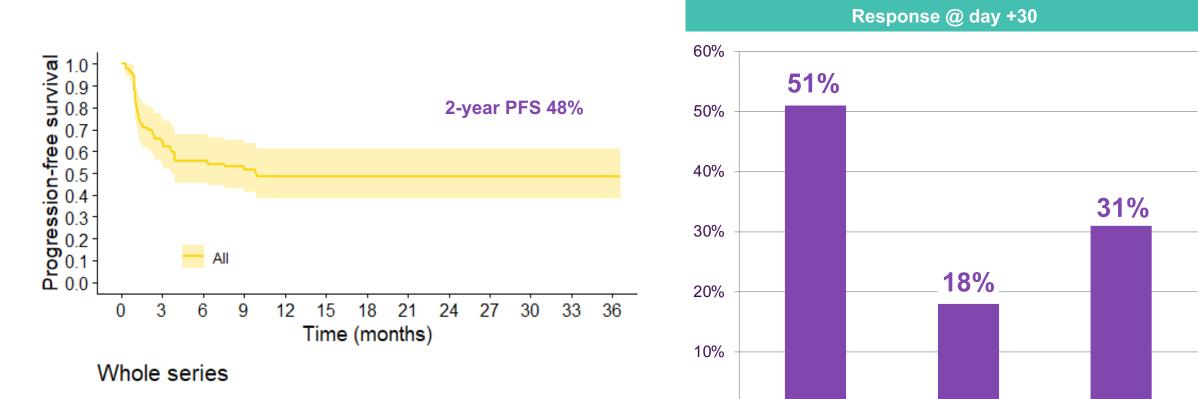
*per ASTCT consensus grading criteria, Lee et al., BBMT, 2019


Survival of the whole cohort of pts treated with commercial tisa-cel or axi-cel from the French DESCAR-T registry before any matching

PFS from CAR T infusion (*n* = 729)

Shaded areas correspond to the 95% confidence bands. CL, confidence limit.

Survival according to CAR T product after PSM

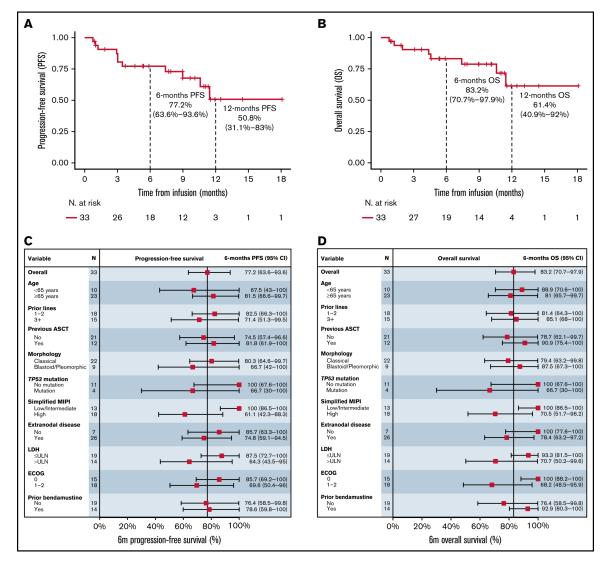

PFS according to CAR T product

OS according to CAR T product

Outcome of 79 evaluable SOC LBCL patients

NR

0%


CR

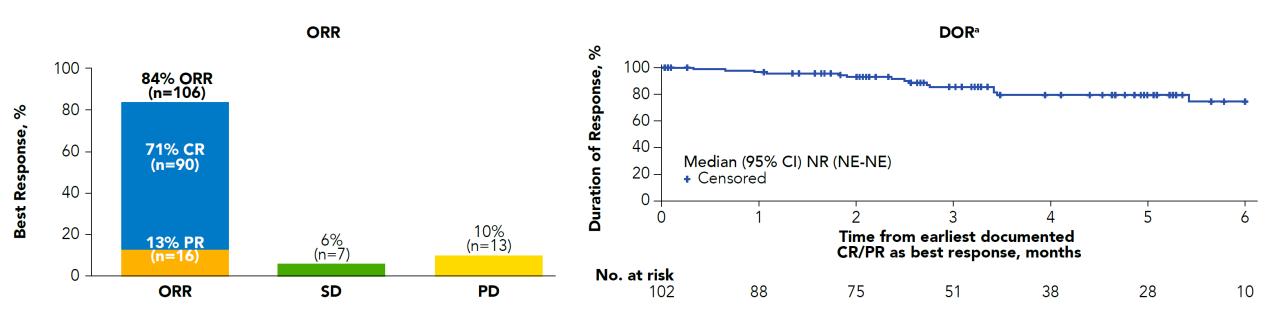
PR

- 79 (0)51 (0)41 (3)36 (5)28 (112)0 (19)5 (24)2 (27)1 (28)7 (32)3 (36)2 (37)1 (38)

Speaker Experience, INT Milano

Real-world evidence of brexucabtagene autoleucel for the treatment of relapsed or refractory mantle cell lymphoma (19 of 28 infused)

Gloria Iacoboni,Kai Rejeski,Guillermo Villacampa,Jaap A. van Doesum,Annalisa Chiappella,Francesca Bonifazi,Lucia Lopez-Corral,Michiel van Aalderen,Mi Kwon,Nuria Martínez-Cibrian,Stefania Bramanti,Juan Luis Reguera-Ortega,Lina Camacho-Arteaga,Christian Schmidt,Ana Marín-Niebla,Marie José Kersten,Alejandro Martin Garcia-Sancho,Pier Luigi Zinzani,Paolo Corradini,Tom van Meerten,Marion Subklewe,Pere Barba, Real-world evidence of brexucabtagene autoleucel for the treatment of relapsed or refractory mantle cell lymphoma, **Blood Adv, 2022**


Real-World Outcomes of Brexucabtagene Autoleucel for the Treatment of Relapsed or Refractory Mantle Cell Lymphoma in the United States

Frederick L. Locke, MD¹; Zhen-Huan Hu, MPH²; James Gerson, MD³; Matthew J. Frank, MD; PhD⁴;
L. Elizabeth Budde, MD, PhD⁵; Michael L. Wang, MD⁶; Brent Logan, PhD⁷; Ioana Kloos, MD, PhD²;
Rubina Siddiqi, PhD²; Jina Shah, MD^{2*}; Hairong Xu, MD, PhD²; Marcelo C. Pasquini, MD, MS⁷

¹Moffitt Cancer Center, Tampa, FL, USA; ²Kite, a Gilead Company, Santa Monica, CA, USA; ³University of Pennsylvania Medicine, Philadelphia, PA, USA; ⁴Stanford University, Stanford, CA, USA; ⁵City of Hope National Medical Center, Duarte, CA, USA; ⁶University of Texas MD Anderson Cancer Center, Houston, TX, USA; ⁷Center for International Blood and Marrow Transplant Research, Medical College of Wisconsin, Milwaukee, WI, USA

*Dr. Shah was an employee of Kite when the studies reported here were conducted

Objective Response and Duration of Response (135 pts included in the analysis)

- Among all patients with best response assessed and reported (n=126), 106 (84%; 95% CI, 77-90) had an objective response
- With a median 6 months of follow-up, the median DOR was not yet reached; the estimated 3- and 6-month DOR rates were 85% (95% CI, 75-92) and 75% (95% CI, 58-85), respectively

^a Among patients who achieved CR/PR as best response.

CR, complete response; DOR, duration of response; NE, not estimable; NR, not reached; ORR, objective response rate; PD, progressive disease; PR, partial response; SD, stable disease.

Acknowledgements

Dept. of Hematology

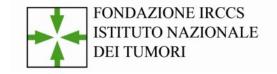
Prof. Paolo Corradini

Lab Cristiana Carniti Martina Magni Chiara Monfrini Francesca Nanetti Nicole Caldarelli Emma Esposito

Clinical Unit Annalisa Chiappella Anna Dodero Anna Guidetti Martina Pennisi Federico Stella Eugenio Fardella

Research

<u>support</u> Anisa Bermema Giorgia Ferrara Giorgia Gobbi


All the Referral centers, patients, families and nurses All the CAR-T teams:

Tissue establishment Michele Magni, Paolo Longoni

